
On Effectiveness of Wiretap Programs in Mapping Social Networks ∗

Maksim Tsvetovat† Kathleen M. Carley‡

Abstract
On December 16, 2005, a New York Times article[31] re-
vealed that in the immediate aftermath of the September
11th attacks, the National Security Agency began a broad
program of domestic signal intelligence collection. As press
reports indicated [28], NSA implemented its new collections
program based on the snowball sampling methods, which
is generally used in surveying hidden populations and net-
works.

However, snowball method is known to be a biased to-
ward highly connected actors[21] and consequently produces
core-periphery networks when these may not necessarily be
present. In case of terrorist networks, the last statement is
particularly important in light of the “smoking gun” argu-
ments presented by the government.

In a further argument, the government argues that
wiretaps on suspect terrorist operatives need to be put in
place extremely fast and in large quantities, thus overloading
the FISA[37] court system. In the use of snowball sampling,
overload of information collection system does present a
distinct problem due to exponential growth of the number
of suspects to be monitored.

In this paper, we will focus on evaluating the effective-
ness of the wiretapping program in terms of mapping fast-
changing networks of a covert organization. By running a
series of simulation-based experiments, we are able to give
a number of information gathering regimes a fair evaluation
based on a consistent criteria. Further, we propose a set
of information gathering programs that achieve higher effec-
tiveness then snowball sampling, at a lower cost.

1 Introduction
On December 16, 2005, a New York Times article[31] re-
vealed that in the immediate aftermath of the Septem-
ber 11th attacks, the National Security Agency began a
broad program of domestic signal intelligence collection.
Despite the fact that the NSA is barred by its charter
from collecting information on US citizens on constitu-
tional grounds, the Senate Joint Resolution 23 [36] of
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Sept. 14, 2001 was treated as a declaration of war, thus
granting intelligence agencies broad surveillance powers.

As press reports indicated [28], NSA implemented
its new collections program based on the following
method: monitoring was started with a small number of
known suspects within the US. Then, contacts of these
subjects (e.g. telephone numbers that the subjects have
called) were added to the list of suspects and monitored
as well, thus expanding the dragnet with the speed of a
combinatorial explosion.

In the social-science methodology, this method is
known as “snowball sampling” and is generally used
in surveying hidden populations and networks, such as
these of drug users. Despite the fact that the snowball
method is used frequently, it is not a panacea and is
known to be a biased sampling methodology[7]. In par-
ticular, the snowball method gives preferential treat-
ment to highly connected actors[21] and consequently
produce core-periphery networks when these may not
necessarily be present.

In case of terrorist networks, the last statement is
particularly important in light of the “smoking gun”
arguments presented by the government. It is known[33]
that suicide terrorist operations such as these conducted
by Al Qaeda are not conducted by core actors, but
rather “operative cells” - tightly woven small groups
of operatives on the periphery of the large network.
Thus, surveillance of a peripheral operative not directly
involved with an operative cell is likely to lead the
investigation to central actors located overseas and not
to a local sleeper cell, which in fact may be preparing a
large-scale attack.

In a further argument, the government argues that
wiretaps on suspect terrorist operatives need to be put
in place extremely fast and in large quantities, thus
overloading the FISA[37] court system. In the use of
snowball sampling, overload of information collection
system does present a distinct problem due to exponen-
tial growth of the number of suspects to be monitored.
Thus, size of the program quickly becomes a liability
and by necessity has to be controlled. This vast increase
in need for computational power could be the cause of
a significant expenditures to enhance U.S. wiretapping
capabilities[24].

In this paper, we are not going to comment on



the legality of methods employed by the government,
but will instead focus on evaluating the effectiveness
of the wiretapping program in terms of mapping fast-
changing networks of a covert organization. By running
a series of simulation-based experiments, we are able to
repeatably recreate scenarios of network evolution, thus
giving a number of information gathering regimes a fair
evaluation based on a consistent criteria.

Further, we propose a set of information gathering
programs that achieve higher effectiveness then snow-
ball sampling, at a lower cost. If implemented, such
programs would increase intelligence-gathering capabil-
ities without sacrificing or overloading the legal frame-
work set by FISA Act and FISA court system.

This paper also shows an annealing-based informa-
tion capture strategy that is a more effective means of
sampling social networks of hidden populations. We
show that this strategy is capable of gleaning more accu-
rate information about the network from lesser number
of captured messages, and does not exhibit a strong bias
towards highly connected nodes. Moreover, we show
how this strategy can be parametrically tuned to bal-
ance between breadth of survey and amount of captured
information per node – a tunable bias towards core or
periphery of the network.

The paper is organized as follows: in section 2 we
establish the mechanism of structural analysis of covert
network and its applicability to analysis of cellular net-
works such as Al Qaeda (section 3). Then, we introduce
the simulation methodology that enables experimenta-
tion with wiretapping policies (section 6) and proceed
with establishment of the baseline evaluation method
and cost metrics (section 7). We proceed to evaluate
performance of snowball sampling techniques (section 8)
and simple SNA-based sampling policies (section 9). Fi-
nally, we introduce and evaluate an optimization-based
wiretapping policy that lowers resource requirements
and raises the quality of SIGINT collection (section 10).

2 Background
For reasons of national security it is important to
understand the properties of terrorist organizations that
make such organizations efficient and flexible. We must
understand what does the underlying organization look
like, how does it evolve, and how can the evolution of
its structure be mapped through observation?

Terrorist organizations are often characterized as
cellular — composed of quasi-independent cells and fea-
turing a distributed chain of command. This is a non-
traditional organizational configuration; hence, much of
the knowledge in traditional organizational theory, par-
ticularly that focused on hierarchies or markets, is not
directly applicable. Some lessons can be learned from

previous work on distributed and decentralized organi-
zations. This work demonstrates that such structures
are often adaptive, useful in a volatile environment,
and capable of rapid response [29][27]. In other words,
one should expect terrorist organizations to adapt, and
adapt rapidly.

Terrorist organizations are often characterized as
dynamic networks where the connections among person-
nel define the nature of that evolution. This suggests
that social network analysis will be useful in character-
izing the underlying structure and in locating vulnera-
bilities in terms of key actors.

A further complication relates to the fact that the
only way to obtain information about terrorist networks
is by gathering intelligence — via signal interception
(SIGINT) or human intelligence (HUMINT) means. By
their nature, SIGINT and HUMINT techniques provide
incomplete and frequently inaccurate data, and the
heuristics for learning shapes of covert networks need
to take this uncertainty into account. A cost factor is
present as well - each piece of information comes with a
price and it would be prudent to maximize its utility.

It is important at the outset to note that this ex-
amination of intelligence gathering strategies is highly
exploratory. We make no claims that it is comprehen-
sive, nor that the types of “error” in the data that in-
telligence agencies can collect is completely described.
Further, our estimate of the structure of the covert net-
work is based on publicly available data much of which
is qualitative and requires interpretation. This work
should therefore be read as a study in the power of an
empirically grounded simulation approach and a call for
future research.

We restrict my analysis to a structural or network
analysis and focus on what the covert network looks
like, how its structure influences its performance and
its ability to pass information, how it evolves, and how
its path of evolution can be altered. Admittedly, in
this complex arena there are many other factors that
are critical but they are beyond the scope of this study.
Thus, from a straight social network perspective, this
study suggests the types of methodological issues that
will emerge when working with dynamic large scale
networks under uncertainty.

3 Covert Terrorist Networks - the Al Qaeda
Al Qaeda, arabic for “The Base”, is the largest known
extra-national terrorist organization. In 2002, it was
estimated to have the support of six to seven million
radical Muslims worldwide, of which 120,000 are willing
to take up arms [23]. Its reach is global with outposts
reported in Europe, Middle East, East Asia and both
Americas. In the Islamic world, its task is to purify so-



cieties and governments according to a strict interpre-
tation of the Koran and to use religion as a unification
force for the creation of an Islamic superpower state.

As Goolsby[20] stated, Al Qaeda extends its reach
and recruits new member cells via the adoption of local
Islamic insurgency groups. Beginning with provision of
operational support and resources to facilitate growth,
Al Qaeda representatives work to transform an insur-
gency group such as Jemaah Islamiyya (Indonesia) from
a group seeking political change to a full-fledged terror-
ist organization executing multi-casualty attacks such
as the Bali bombing in 2002[22].

Although the modus operandi of Al Qaeda is cel-
lular, familial relationships play a key role. As an Is-
lamic cultural and social network, Al Qaeda members
recruit from among their own nationalities, families and
friends. What gives Al Qaeda its global reach is its abil-
ity to appeal to Muslims irrespective of their nationality,
enabling it to function in East Asia, Russia, Western
Europe, Sub-Saharan Africa and North America with
equal facility.

Unlike conventional military forces which are hier-
archical and centralized, terrorist militant units are gen-
erally small, geographically dispersed and, at the first
glance, disorganized. Nevertheless, they have been able
to effectively counter much larger conventional armies.
Large terrorist organizations operate in small, dispersed
cells that can deploy anytime and anywhere [32]. Dis-
persed forms of organization allow these networks to
operate elusively and secretly.

The need for security dictates that terrorist orga-
nizations must be structured in a way that minimizes
damage to the organization from arrest or removal of
one or more members [17]. This damage may be di-
rect - making key expertise, knowledge or resources in-
accessible for the organization, or indirect - exposing
other members of the organization during interroga-
tions. There are several factors that allow a terrorist
organization to remain covert, including:

• Strong religious or ideological views that allow
members to bond within a cell.

• Physical proximity among cell members, often to
the extent of sharing living quarters, working and
training together.

• Lack of rosters on who is in which cell.

• Cell members being given little knowledge of the
organizational structure and the size of the organi-
zation.

• Inter-cell communication on as-needed basis only.

• Information about tasks issued on a need-to-know
basis so very few people within the organization
know about the operational plans in their entirety.

A need-to-know information policy can be counter-
productive when an organization needs to complete a
task that is larger than any one cell. Further, such poli-
cies tend to lead to duplication of effort and reduce the
ability of one cell to learn from another. To fix these
inefficiencies, terrorist organizations have been known
to employ “sleeper links” - where a small number of
members of each cell have non-operational ties (such as
family ties, ties emerging from common training, etc)
to members of other cells [25]. These links are rarely
activated and are used mainly for coordinating actions
of multiple cells in preparation for a larger operation.

To remain covert, the Al Qaeda has structured it-
self as a leaderless design characterized by its organic
structure, horizontal coordination, and distributed de-
cision making. However, the need to maintain a strong
ideological foundation and resolve coordination issues
has led to the need for strong leadership. One appar-
ent solution has been to have multiple leaders diffused
throughout the network and engaged in coordinating ac-
tivities without central control or a hierarchy among the
cells. Whether the leaders are themselves hierarchically
organized, even though the cells are not, is less clear.

Substantial intelligence effort is needed to piece
together the massive amount of information, both post-
factum investigations and “logs” of activity, to generate
a picture of the entire organization. Nevertheless,
the picture that is emerging suggests that terrorist
organizations are organized at the operational level as
networks rather than as hierarchies [10].

4 Developing the Formalism of a Cellular
Network

Given the case studies of Al Qaeda and other terrorist
networks, it is clear that terrorist organizations can-
not be adequately described as random graphs or as
scale-free networks. Therefore, a different model of ter-
rorist networks has emerged, namely cellular networks
[33][12][14]. While this model may not fit a simple math-
ematical definition such as scale-free or small-world net-
work, its base is in empirical and field data[20]. Cellu-
lar networks in fact are not characterized by a lack of
a formal representation but are defined through a more
complex process which takes as a goal improvement of
fit between the model network and empirical data[39].

Cellular networks[10] are different from traditional
organizational forms as they replace a hierarchical
structure and chain of command with sets of quasi-
independent cells, distributed command, and rapid abil-



ity to build larger cells from sub-cells as the task or sit-
uation demands. In these networks, the cells are often
small and are only marginally connected to each other.
The cells are distributed geographically, and may take
on tasks independently of any central authority[11].

Rothenberg[33] observed a number of properties of
a cellular network:

• The entire network is a connected component.

...It is likely that on the local level,
individual ties are very strong...On the
higher level, individual ties are likely to
be weaker but the strength of association
[people known in common, doctrine] is
likely to remain high...

• The network is redundant on every level: Each
person can reach other people by multiple routes
- which can be used for both transmission of infor-
mation as well as material. On the local level, there
will be a considerable structural equivalence[40],
which will ameliorate the loss of an individual. The
redundancy in communication channels may also
be mirrored in the redundance of groups engaged
in a particular task.

• On the local level, the network is small and dy-
namic, consisting of small cells (4-6 people) that
operate with relative independence and little over-
sight on the operational level.

• The network is not managed in a top-down fashion.
Instead, its command structure depends on vague
directives and religious decrees, while leaving local
leaders the latitude to make operational decisions
on their own.

• The organizational structure of a terrorist network
was not planned, but emerged from the local con-
straints that mandated maintenance of secrecy bal-
anced with operational efficiency.

Each cell is, at least in part, functionally self-
sufficient and is capable of executing a task indepen-
dently. Cells are loosely interconnected with each other
for purposes of exchanging information and resources.
However, the information is usually distributed on a
need-to-know basis and new cell members rarely have
the same exact skills as current members. This es-
sentially makes each individual cell expendable. The
removal of a cell generally does not inflict permanent
damage on the overall organization or convey significant
information about other cells. Essentially, the cellular
network appears to morph and evolve fluidly in response
to anti-terrorist activity[34].

This leads to a hypothesis that cells throughout
the network contain structurally equivalent[18] and es-
sential roles, such as ideological or charismatic leaders,
strategic leaders, resource concentrators and specialized
experts.

Given this hypothesis, one can further reason that
operations of a particular cell will be affected in a neg-
ative way by the removal of an individual filling one of
these roles. We further posit that a further develop-
ment of a cellular network formalism as an empirically
driven and yet mathematically sound concept, is neces-
sary for creation of computational models that combine
face validity towards real-world data as well as veridical-
ity towards formal models of organizational evolution.

5 Agent-based Network Modeling
NetWatch agents are intelligent adaptive information
processing systems, constrained and enabled by the
networks in which they are embedded. These networks
evolve as individuals interact, learn and perform tasks.
The design of the NetWatch multi-agent model is based
on the principles of agent-based models of complex
adaptive systems outlined by Langton[26]:

1. The model consists of a population of simple
agents.

2. There is no single agent that directs all of the other
agents.

3. Each agent details the way in which a simple
entity reacts to local situations in its environment,
including encounters with other agents.

4. There is no rule in the system hat dictates global
behaviours.

5. Any behaviour at levels higher then individual
agents is therefore emergent.

However, We make an important distinction from
Langton’s ABM techniques. In NetWatch and related
models, agents are not defined as simplistic automata
following a small set of deterministic rules. Instead, an
agent can be viewed as a representation of a human
actor involved in the the simulated activities. Using
artificial intelligence techniques, the agents can plan and
reason about task completion and formation of their
social networks and make strategic moves to maximize
their utility.

In effect, each agent within NetWatch is built in
the same manner as an autonomous robot (sans the
hardware) designed to survive on its own in a hostile
environment. In greater detail, the methodology of
multi-agent network modeling is based on the following
principles:



• Agents are independent, autonomous entities en-
dowed with some intelligence, though cognitively
limited and boundedly rational. Agents can utilize
both deterministic or stochastic rules.

• Agents and the networks in which they are embed-
ded co-evolve. While the initial topology of agent
network can be used as an independent variable,
the community of agents will create a very differ-
ent topology at the end of a simulation.

• Agents do not have accurate information about
the world or other agents and are limited by their
perception.

• Agents can learn the state of the world through
interaction. Note that while agents do not have ac-
cess to a global world-view, they can learn about
their non-immediate neighbors through communi-
cation and collaboration with other agents.

• Agents can be strategic about their communica-
tion. They can use rule-based, decision-theoretic,
optimization or other techniques to maximize their
utility.

• Agents do not use predefined geometrical locations
or neighborhoods. Instead, their choice of commu-
nication partners depends on the topology of their
social network and evolves over time.

6 Modeling Dynamic Networks
Based on the conceptual framework of multi-agent sim-
ulations, we have developed NetWatch, a multi-agent
network model for reasoning about the destabilization
of covert networks such as organized crime or terrorist
organizations under conditions of uncertainty.

NetWatch is built to simulate the communication
patterns, information and resource flows in a dynamic
organizational network based on cognitive, technologi-
cal and task based principles. In addition, the model
is grounded using information about surveillance tech-
nologies and intelligence operations (e.g. [2]) and the
covert networks (e.g. [6]).

The design of NetWatch simulation of covert net-
works and anti-terrorist activity is based on the concept
of red teaming, a war-gaming approach in which a popu-
lation of participants is divided into two or more adver-
sarial teams. The teams then are empowered to use any
techniques at their disposal to achieve their goals. The
main objective of red-teaming is learning the mind-set
and modus operandi of the adversary and development
and testing of strategies fielded against said adversary.

For the purposes of simulation, the covert network
is designated as the Red Team and the network of

Blue’s Perception
of the Red Team

Observe

Attack

Blue Team

Red Team

Figure 1: NetWatch Simulation Design

anti-terrorism forces as the Blue Team (see figure 1).
Both of the teams consist of a number of autonomous,
intelligent agents, designed to simulate with highest
possible fidelity the activity of individuals and groups
present in the subject networks.

A complete description of NetWatch architecture
for simulation of dynamic covert networks has been de-
scribed in [41] and [38]; the complete technical specifi-
cation of the system is beyond the scope of this paper.

The agents of the Red Team are intelligent,
knowledge-driven planning agents that model the pro-
cess of execution of a logistically complex terrorist at-
tack - complete with gathering required resources, ob-
taining knowledge and training, and tactical planning.

Red Team network is modelled upon organizational
structure of a terrorist organization and constructed to
fit a statistical profile of such an organization. The sta-
tistical profile mechanism (described in[39]) allows for
manipulation of both social network topologies and dis-
tribution of information and resources, which leads to
robust capabilities for testing of theories of organiza-
tional design in covert networks.

The Blue Team represents a set of agencies
engaging in anti-terrorist activity and pursues two
interconnected goals. The blue team conducts
signal intelligence-based information gathering and
uses collected information to build a MetaMatrix
representation[9] of the Red Team.

7 Learning Network Structure though Signal
Intelligence: Random Sampling

Random sampling of communications can be considered
a baseline against which performance metrics of other
network sampling strategies can be compared. While
random sampling of wire (or wireless) traffic is rarely
used in the real world, in simulation it can be used



to provide a robust notion of signal-to-noise ratio and
its effect on acquisition of knowledge about network
structure.

As the true goal of intelligent wiretapping heuristics
is to “do more with less” — i.e. produce a maximally
correct result given a certain amount of captured traffic
— it is prudent to compare quality of network struc-
ture discovered via intelligent heuristics with results of
similarly configured random sampling systems.

In this experiment, We establish such a baseline by
comparing performance of random sampling techniques
across networks of different size and topology, while
controlling for signal-to-noise ratio of the sampling
apparatus.

7.1 Experimental Design This experiment is
based on a matrix design and tests performance of a
number of simple wiretapping strategies on simulated
organizations of different size and initial topology, test-
ing every possible combination of the following param-
eters:

Topologies Number of Agents
Uniform 100
Scale-free 250
Cellular 0

The density of uniform random network[16] is set
at 0.2 - i.e. probability Pi,j of an edge existing between
agents i and j is 20%. The scale-free network are
grown using the Barabasi-Albert method of preferential
attachment[5], with parameters:

k = 0.25

γ = 2

The cellular networks are generated using the
mechanism described in [39] using the following profile:

Parameter Value
Mean Cell Size 6
Cell Size St. Deviation 1.7
Internal Cell Density 0.9
Probability of Random Connections 0.01
Density of cell leaders 0.16
Probability of connection between leaders 0.6
Probability of triad closure within cells 0.9
Probability of triad closure outside cells 0.17

Each cell of the experiment was repeated 20 times,
generating 20 random networks with the same paramet-
ric signature. Results of the experimental repetitions
were averaged.
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Figure 2: Effect of Initial Network Topology on Wiretap
Performance, (100 agents; averaged over 20 runs)

7.2 Performance Measurement We measure per-
formance of wiretapping strategies based on the assump-
tion that the goal of discovering nodes and connection
patterns between them is to achieve a maximally com-
plete picture of the overall network structure. The con-
cern in this case is the surveillance technique needs to
not only uncover highly visible actors in the network but
also discover the breadth of the network structure and
minimize the number of undiscovered nodes and edges.

If this assumption is true, the best simple measure
of quality of network is hammingdistance[35], a sum
of differences between two graph structures, in this
case, the True and Learned Networks. The significance
of hamming distance in this particular case is that it
illustrates the overall number of errors made by the
Blue Team agents. However, to compare performance
of an algorithm on networks of different size, the raw
hamming distance needs to be normalized:

Dnorm
hamming =

Dhamming

e
=

Dhamming

(n− 1)2

where e is the number of possible edges in a graph, an
n is the number of nodes. Lower normalized hamming
distance signifies higher performance.

7.3 Observations and Discussion

7.3.1 Effects of Signal-to-Noise Ratio on Wire-
tap Performance This portion of the experiment
combines data collected for all initial topologies of the
experimental design sampled at different levels of signal-
to-noise ratio.

Figure 3 shows the effect of signal-to-noise ratio
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Figure 3: Effect of Signal-to-Noise Ratio Wiretap Per-
formance; (averaged over 100, 200 and 500-agent net-
works, 20 runs in each configuration)

of the random sampling wiretap on the quality of
acquisition of network data. The conclusion drawn from
this figure on its own is fairly obvious — greater signal-
to-noise ratio has a significant impact on the quality of
learned network. However, this dataset is used in the
experiments that follow as a point of reference and a
baseline that other results are compared to.

The baseline results show a near-linear dependence
of accuracy of network mapping on signal-to-noise ra-
tion, in case of purely random sampling of communi-
cations. This is expected due to the fact that random
sampling has an equal chance of discovering all edges of
the network, whether they belong to a highly connected
agent or to a near-isolate agent. The probability of dis-
covery of an edge at any given time is thus proportional
to the ratio of messages that are captured and overall
message traffic - which comprises the effective signal-to-
noise ratio.

8 Snowball Sampling
A Snowball Sampling strategy is based on work of Bier-
nacki and Waldorf[7] and Granovetter[21]. A snowball
sampling strategy captures traffic originating from one
agent and targets every agent with which it communi-
cated. This essentially is a breadth-first search of the
network. In NetWatch the snowball sampling strategy
targets agents sequentially, one at a time.

While snowball sampling can quickly map commu-
nication in smaller social networks, it exhibits a number
of problems. First of all, it can only discover agents that
reside inside a single component of the network. This
problem is compounded by the fact that cellular net-

Listing 1: Snowball Sampling Algorithm! "
CurrentTarget = a random s t a r t i n g po int (A) .

REPEAT:
Add the CurrentTarget to the Taboo L i s t (B)
Add a l l agents that CurrentTarget

communicates with to the Sampling Queue
REPEAT

NewTarget = deque from Sampling Queue
UNTIL NewTarget i s NOT on the Taboo L i s t (C)

UNTIL Sampling Queue i s empty# $
works consist of semi-isolated groups of agents where
frequency of communication inside the group is much
greater then frequency of communication outside the
group. Mapping out multiple components of the net-
work requires snowball strategy to use multiple, ran-
domly selected entry points.

Further, as agents are targeted sequentially, a prob-
lem of oscillation arises. In a sub-network resembling a
star topology, a snowball sampler has to return to the
center of the star before it can continue to sample com-
munications from other agents. This can be resolved
by using a queue to manage a list of unexplored targets
and a taboo list to prevent the search algorithm from
revisiting the targets that it has already explored.

Figure ?? and listing 1 illustrates how the snowball
sampling algorithm explores a simple graph.
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Figure 4: Snowball sampling performance: hamming
distance (mean of 20 runs)

Snowball sampling strategy (see figures 4,??) per-
forms at a level comparable to the random sampling
baseline at signal-to-noise ratio of 25%. However,
the measured signal-to-noise ratio of snowball sampling
strategy (i.e. the ratio of number of captured messages



to number of rejected messages) is markedly lower -
16.3%.

Furthermore, snowball sampling[21] has been
showed to be biased toward highly connected nodes, so
extensive use of this technique may result in observa-
tion of scale-free core-periphery structures where none
exist[7]. This experiment confirms that, while effective
at learning network structures at a higher efficiency than
baseline methods, snowball sampling does not discover
the breadth of the network by avoiding nodes with low
communication rates.

As scale-free models of terrorist networks are easily
operationalized, and present a ready tactical model
of counter-action, their popularity among intelligence
analysts has dramatically increased. However, the
reality of terrorist networks does not fit neatly into
the scale-free network model. It has been observed[33]
that non-state terrorist networks are not only scale-free
but also exhibit small world properties. This means
that while large hubs still dominate the network, the
presence of tight clusters (cells) continue to provide local
connectivity when the hubs are removed.

For example, attack on Al Qaeda’s Afghanistan
training camps did not collapse its network in any
meaningful way. Rather, it atomized the network into
autonomous clusters of connectivity until the hubs could
reassert their priority again. Many of these clusters will
still be able to conduct attacks even without the global
connectivity provided by the hubs.

Furthermore, critical terrorist social network hubs
cannot be identified based on the number of links alone.
For example, Krebs observed[25] that strong face-to-
face social history is extremely important for trust
development in covert networks. Of similar importance
is the relevance of skills and training of agents inside
a cell to the task at hand. Thus, importance of
any individual within the network should be rated on
a vector of factors pertaining to its qualities as an
individual as well as types and qualities of its links.

Rothenberg[33] notes that postulating a path of a
set length from everyone in the global network to ev-
eryone else (i.e. scale-free nature of a terrorist net-
work) runs contrary to the instructions for communi-
cation infrastructure set forth in the Al Qaeda training
manual[1]. Thus, if a terrorist network was observed to
be scale-free, it can be argued that its scale-free nature
is not a matter of design and can possibly be an artifact
of the data collection routines.

Next section presents a number of strategies that
improve upon performance of snowball sampling on
dynamic networks via use of socially intelligent traffic
analysis and multi-point sampling.

Listing 2: Simple Socially Intelligent Sampling! "
CurrentTarget = random s t a r t i n g po int
REPEAT

Add CurrentTarget to TabooList
Capture a l l t r a f f i c TO and FROM Current

Target for a per iod o f time
Store captured messages in MetaMatrix

accumulator
Run Measure o f cho i c e on MetaMatrix
CurrentTarget = agent h i ghe s t in Measure

FOREVER# $
9 Socially Intelligent Traffic Analysis
As the Blue Team agents receive messages from the
wiretap agents, they use their address information to
build a representation of the network of the Red Team,
or the Learned Network.

Thus, while Snowball sampling is myopic (i.e. can
only see and survey small portions of the network at
each time), a more intelligent Blue Team agent can
use its accumulated knowledge of the target network
to make intelligent decisions about locations of future
wiretaps and configuration of their message filters.

The Blue Team agents implement an analysis
toolkit containing a number of common social network
analysis algorithms including degree centrality, between-
ness centrality and closeness centrality [19]. Also acces-
sible to the agents are methods of MetaMatrix analy-
sis including cognitive demand [13], and knowledge and
task exclusivity metrics[4],[3].

In its simplest implementation, the socially intelli-
gent wiretap algorithm function is presented in listing 2.

9.1 Observations Figure 5 demonstrates perfor-
mance of socially intelligent wiretap methods in terms
of hamming distance between learned network and true
network. Heuristics based on pure SNA metrics of
degree and betweenness centrality produce essentially
identical performance over time and several times reach
the best performance among all techniques. However,
on average they do not perform as well.

MetaMatrix-based metrics of cognitive demand and
knowledge exclusivity track closely to each other in the
first half of the run but diverge as knowledge diffusion
increases. The explanation of this divergence lies in the
fact that with time, knowledge becomes diffused among
the agents. When agents send knowledge requests to
other agents, with knowledge diffusion these requests
will be sent across a larger group of agents — and thus,
cognitive demand at time t becomes a worse predictor
of who will communicate at time t + 1.
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Figure 5: Mean Performance of Socially Intelligent
Strategies (3x3 cells, 20 runs/cell)
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Figure 6: Histogram: frequency of capture of messages
per agent; demonstrates adherence to local maximum
in simple soc.int. heuristics (single run)

Overall, socially intelligent strategies performed
significantly better then baseline established for signal-
to-noise ratio of 0.25 (see figure 5) and slightly worse
then baseline at signal-to-noise ratio of 0.5 (figure ??).
At the same time, the measured signal-to-noise ratios
of socially intelligent strategies were significantly lower
then those needed to achieve same performance in the
baseline strategies.

Socially intelligent sampling strategies as a whole
perform significantly better than baseline strategies
at the same signal-to-noise ratio as well as snowball
sampling strategy. The highest performance on average
comes from strategies that take advantage of knowledge
content of communications — cognitive demand and
knowledge exclusivity.

However, a significant problem remains in the de-
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Figure 7: Socially Intelligent Traffic Sampling with
Probabilistic Targeting

sign of the simple heuristics. Essentially, these heuris-
tics can be described as a hill-climbing algorithm where
the sampling point (i.e. the wiretap) moves in the di-
rection of highest value of the metric. However, these
algorithms are generally unable to discern local maxima
from globally optimal solutions. Once such local maxi-
mum is discovered, the hill-climber is unlikely to sample
any other area of the network.

Figure 6 illustrates the occurrence of local maxi-
mum in one of the experiments (cellular network, degree
centrality heuristic). The histogram shows frequency
with which each of the nodes was targeted by the wire-
tap. In this particular case, the local maximum is lo-
cated near Agents 92 and 93 - which together account
for close to half of messages captured.

A further complication to the above problem is
the fact that initially the Blue Team agents know very
little about the Red Team — thus the accuracy of
their estimations of centrality metrics is bound to be
low[8],[15]. Therefore, the heuristic can fall into a local
maximum within one or two time periods from the start.

While problems of local maxima are serious, they
are not unsolvable. One of the best solutions for navi-
gating parameter spaces with local maxima is to use an
algorithm similar to simulated annealing with a mea-
sure of randomization in the beginning to serve as a
bootstrapping mechanism. The next section describes
such an algorithm, and shows its performance advan-
tages over simple hill-climbing heuristics.

10 Socially Intelligent Traffic Sampling with
Probabilistic Targeting

We propose a more robust solution to a traffic sampling:
an algorithm with probabilistic targeting. This algo-
rithm allows the much greater coverage of the network
and is less prone to finding local maxima. The algorithm
maintains a set of nodes that comprise its region of in-
terest (ROI). After random initialization and a period
of traffic capture, the captured MetaMatrix is analyzed
and a new ROI is constructed based on the results of
this analysis. However, nodes to comprise the new ROI
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are not picked deterministically. Rather they are picked
by an exponentially distributed random variable. The
distribution is composed in a way such that the most
prominent nodes (i.e. these highest in the measure of
interest) have the highest probability of being included
in the ROI - but there is non-zero probability of the
least well-connected nodes included as well.

The algorithm is illustrated on figure 7 and list-
ing 3.

The exponentially distributed random variable is
initialized as follows:

P (x) = λe−λx(10.1)

Where parameter λ dictates the speed of fall-off of
the probability distribution function. Thus, λ dictates
how “adventurous” the algorithm would be in including
little-known agents in the ROI.

Furthermore, manipulation of the λ parameter
during the running of the algorithm results in behaviour
similar to that of simulated annealing - the ROI becomes
more constrained as more information on the network
is obtained.

Results of evaluation of this algorithm are pre-
sented in the next section.

11 Performance of Intelligent Network
Sampling Heuristics

In the previous experiment, We have shown that well-
understood sampling mechanisms of snowball sampling
and hill-climbing socially intelligent sampling outper-
form the baseline strategies but still perform sub-
optimally. In this experiment, we test a heuristic tar-
geted at achieving the maximum breadth of coverage of

Listing 3: Socially Intelligent Sampling with Probabilis-
tic Targeting! "
ROI = a smal l random se t o f nodes
Let Exp = Exponent ia l ly D i s t r ibu t ed Random

Var iab le ( lambda )

REPEAT
Capture t r a f f i c TO and FROM nodes in

CurrentTargets
Store captured messages in MetaMatrix

accumulator

Run Measure o f cho i c e on MetaMatrix
I n s e r t a l l nodes in to an Array SORTED by

value o f Measures

ROI = empty l i s t
FOR i = 0 to number o f nodes

Probab i l i t y ( i ) = Exp( i )
r = 0 < random number < 1
IF ( Probab i l i t y ( i ) < r )

ADD Array ( i ) to ROI
END IF

END FOR
FOREVER# $

nodes on the network - perhaps at the expense of depth
of knowledge or number of undiscovered edges.

Performance is evaluated on the basis of hamming
distance between the learned network and true network
and in terms of effective signal-to-noise ratio. I further
introduce a wiretap effectiveness metric that embodies
the “get more from less” philosophy by combining the
two metrics to study incremental efficiency of each of
the algorithms.

Figure 8 shows that annealing-based sampling
strategy clearly outperforms the simpler SNA-based al-
gorithms described in section 10. At signal-to-noise
ratios similar to the simple strategies (figure 9) the
annealing-based strategies achieve a mean hamming dis-
tance of about 50% of simple strategies.

11.1 Sampling Biases Simulated Annealing algo-
rithm as described above is a probabilistic method,
where probability of capture varies depending on value
of a cost function. This method achieves its low ham-
ming distance metric by sampling more efficiently. Ev-
ery agent that has been discovered has a chance of being
sampled in a particular period as opposed to only agents
with high levels of SNA metrics. The heuristic does
not get stuck in local maxima and the randomization of
search allows the heuristic to bootstrap itself efficiently.
The level of randomization goes down slowly thus fo-
cusing the search and preventing waste of resources on
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agents that don’t communicate a lot.
As we have mentioned in sections 8 and 10, both

snowball and simple socially-intelligent strategies ex-
hibit significant biases in relation to the network posi-
tion of nodes. Snowball sampling tends to collect signif-
icantly more information on nodes that are highly con-
nected; simple socially intelligent methods are biased
towards prominent nodes detected by the SNA metric
chosen by the user.

The probabilistic sampling method allows the user
to effectively tune the algorithm’s biases to achieve the
best outcome for a particular problem. This is done
by manipulating the fitness function that determines
placement of nodes in the sorted queue. Strength of
the bias is controlled by λ parameter of the exponential
distribution (see equation 10.1), where higher values of
λ correspond to stronger biases.

In its standard configuration, the algorithm ex-
hibits a weak depth bias – a weak preference for sam-
pling highly rated nodes. To achieve a breadth bias
(i.e. to exhibit a prefence for discovery of new nodes),
the user needs to reverse the sort order, thus placing
newly discovered nodes at a priority for communication
capture.

The tunable bias presents an opportunity for users
of the algorithm to sample hidden populations such as
covert networks with an account for changing priorities.
In the beginning of the search, a breadth bias will
achieve greater network coverage in shortest amount of
time, and an increasing depth bias is suitable for later
stages of data collection, where finding out as much as
possible about prominent nodes takes precedence over

mapping the periphery of the network.

12 Conclusions
Our experiments show that it is possible to obtain high-
quality data on covert networks without using random
traffic sampling (e.g. Echelon) or snowball sampling,
both of which capture too much unnecessary data, and
do not make good use of the data that has been already
captured.

As an alternative, use of optimization-based and
socially intelligent sampling techniques allows for a
tightly targeted and resource-thrifty SIGINT gathering
program. Not only these techniques are significantly
less costly, they also produce better overall intelligence
data with a closer match to the covert network being
studied.

The annealing-based information capture is not
limited to sampling communications within covert net-
works, but rather is a flexible methodology for surveying
networks of hidden populations. As the optimization-
based sampling techniques do not require as much infor-
mation capture as snowball sampling, they will present
less of a resource strain on data collectors and are a more
cost-efficient way to sample communication for analysis
of social networks.
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